Enroll.	No		
Farron.	INO.		

SILVER OAK COLLEGE OF ENGINEERING & TECHNOLOGY

BE - SEMESTER-VII MID SEMESTER-I EXAMINATION - WINTER 2017

SUBJECT: DESIGN OF REINFORCED CONCRETE STRUCTURES(2170607) (CL)

DATE: 08-08-2017 TIME:02:00pm to 03:30 pm TOTAL MARKS:40

Instructions: 1. All the questions are compulsory.

2. Figures to the right indicate full marks.

3. Assume suitable data if required.

4. Use of IS – 875 (Part-III), IS 456-2000, SP-16, IS-1893-2002 (Part-I) is permitted.

Q-1 (a) Calculate the base shear for a five storey hospital building having special moment [10] resisting frame (SMRF) located in Mumbai on medium soil with following data using Seismic Coefficient Method.

No. of bay in x and y-direction = 5

Width of each bay = 4m

Thickness of slab =150 mm

Storey height = 3 m

Size of beam = 230 mm x 450 mm

Size of column = $300 \text{ mm} \times 600 \text{ mm}$

Live load = 4 kN/m^2

Assume any additional data if required

Q.2 (a) A seven storeyed building with design life of 100 years, located in Bangalore [15] (Category – III) on plane ground has 6 bays of 5m in length and 5 bays of 4 m in width. Height of each storey is 3.2 m. Plot wind pressure diagram and compute nodal forces at each storey level, as per provisions of IS:875 (Part-III).

OR

Q.2 (a) For a Cantilever Retaining Wall of height 4.2 m, fix the basic dimensions of [15] structural elements and carry out stability analysis.

Unit weight of soil to be retained = $18kN/m^3$

SBC of foundation soil = $175kN/m^2$

Angle of repose = 32°

Friction between foundation soil & base concrete = 0.47

Q.3 (a) Fix the basic dimensions **ONLY** of cantilever retaining wall with the following [06] data:

Angle of Repose = 30°

Unit Weight of Soil = 17 kN/m^3

Height of wall above ground level = 7.5m

 $SBC = 175 \text{ kN/m}^2$

Coefficient of friction between base and soil = 155

Use M20 and Fe415

(b) From above Que. No. 3(a), find out the minimum and maximum pressure at toe [05] and heel.

	(c)	Explain: Strong Column-Weak Beam concept	
		OR	
Q.3	(a)	Explain types of Retaining wall	[06]
	(b)	Explain Four Virtues of Earthquake Resistance Structures	[05]
	(c)	Enumerate the guiding principles for Positioning of Columns	[04]

SILVER OAK COLLEGE OF ENGINEERING & TECHNOLOGY

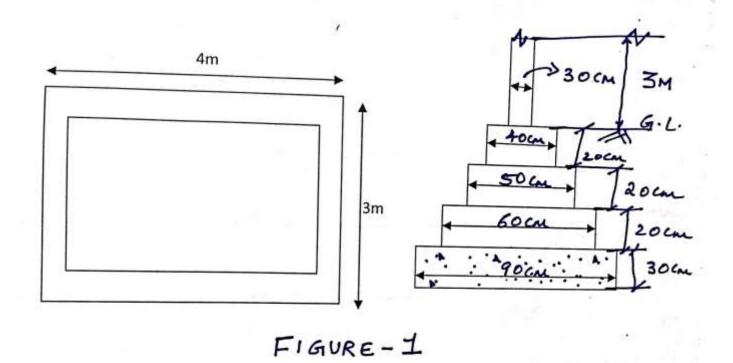
BE - SEMESTER-VII • MID SEMESTER-I EXAMINATION - WINTER 2017

SUBJECT: IRRIGATION ENGINEERING (2170609) (CL)

DATE:	09-08	3-2017 TIME: 2:00 PM – 3:30 PM TOTAL MARKS:40)
Instructions:		 All the questions are compulsory. Figures to the right indicate full marks. Assume suitable data if required. 	
Q.1	(a)	Explain the term duty and delta. Derive the relation between the two.	[05]
	(b)	Give the necessity of canal lining. Name advantages and disadvantages of lining of canals?	[05]
Q.2	(a)	Define irrigation. What are the benefits and ill effects of irrigation?	[06]
	(b)	Give detailed classification of canals based on the size and the alignment.	[05]
	(c)	Define: (a) Intensity of irrigation, (b) Capacity factor, (c) Gross Commanded Area, (d) Culturable Commanded Area	[04]
		OR	
Q.2	(a)	Compare kennedy's and lacey's theories for the design of irrigation channel.	[06]
C	(b)	List various irrigation efficiencies and explain any two.	[05]
	(c)	Write Design steps of Lacey's theory. Give drawback of Lacey's theory.	[04]
Q.3	(a)	Explain salient features of the drip irrigation system. Give advantages and limitations of drip irrigation system.	[06]
	(b)	Design an irrigation channel in alluvial soil using Lacey's theory, for the following data: a) Full supply discharge = 10 cumec b) Lacey's silt factor = 0.9	[05]
	(c)	c) Side slopes of channel = 0.5 (H): 1 (V) An irrigation canal has a gross command area of 50000 ha, 10% of it being unculturable. Calculate the design discharge of the canal for the following data: Take time factor = 0.8 capacity factor = 0.75 and canal losses = 20%,	[04]

Sr. No.	Crop	Intensity of irrigation	Duty at outlet	Crop season
1	Paddy	40%	850	Kharif
2	Bajra	20%	1800	Kharif
3	Wheat	50%	1200	Ravi
4	Vegetables	40%	750	Hot Weather
5	Sugarcane	20%	700	Perennial

$\mathbf{0R}$


- Q.3 (a) Define: (a) Field Capacity, (b) Permanent Wilting Point, (c) Base [06] Period, (d) Kor period, (e) Crop Period (f) Sprinkler irrigation.
 - (b) Design a trapezoidal concrete lined channel to carry a discharge of [05] 200 cumecs for the longitudinal slope 1/5000 and side slopes 1.25:1. Assume the limiting velocity of flow = 2 m/s and Manning's coefficient N=0.014.
 - (c) Find the delta of a crop if the duty is 1800 ha/cumec and the base [04] period is 130 days. b. What would be the duty if the delta is increased by 20% and the base period reduced by 10 days?

SILVER OAK COLLEGE OF ENGINEERING & TECHNOLOGY

BE - SEMESTER-VII • MID SEMESTER-I EXAMINATION - WINTER 2017

SUBJECT: PROFESSIONAL PRACTICE & VALUATION (2170610) (CL)

D/	ATE: 1	10-08-2017 TIME: 2:00 pm to 3:30 pm	TOTAL	MARKS:40		
Instruc	ctions:	 All the questions are compulsory. Figures to the right indicate full marks. Assume suitable data if required. 				
Q.1 (a)		Write formulas for the following: (1) Area of Segment of Circle (2) Curved surface area of cylinder (3) Vol of frustum of cone (4) Volume of sphere (5) Total surface area of cylinder (5)		[05]		
	(b)	Discuss principles of writing good specification.		[05]		
Q.2	(a)	Find the rate of 1st class brickwork (nominal size $20\times10\times10$ cm cementmortar 1:6 per cu. m. by Rate analysis. Assume suitable rat material and labour.	,	[06]		
	(b)	Write the specification of Cement concrete in foundation(1:4:8)		[05]		
	(c)	1. Define Rate Analysis.		[04]		
		2. Density of steel=				
		3. For 20m³ of brick work, how many numbers of bricks are required?				
		4. Write the full form of S.O.R.				
		OR				
Q.2	(a)	Find the rate of R.C.C. work (1:2:4) per cu. m. by Rate analysis. Assumsuitable rates of materialand labour.	ne	[06]		
	(b)	Define specification. What are the purposes of writing specifications? A state importance of it.	Also	[05]		
	(c)	Discuss various factors affecting rate analysis.		[04]		
Q.3	(a)	For the single room (4m*3m) as shown in figure 1, estimate the quantit excavation, concrete in foundation (F.C.), II nd class brick class and I st obrick class with deductions using any method.	•	[06]		
	(b)	Write the specification of I st class Brickwork in Cement Mortar 1:6.		[05]		
	(c)	Explain the types of estimates.		[04]		
	OR					
Q.3	(a)	Write a short note on centre line method and long wall short wall meth	od.	[06]		
	(b)	Find out the material quantity required for 100m ² , (1:3), 20mm plaster.	thick	[05]		
	(c)	Brief the methods of building estimations.		[04]		

Page 2 of 2

TOTAL MARKS: 40

SILVER OAK COLLEGE OF ENGINEERING & TECHNOLOGY

BE - SEMESTER-V • MID SEMESTER-I EXAMINATION - WINTER 2017

SUBJECT: TRAFFIC ENGINEERING (2170613) (CL)

TIME: 02:00pm to 03:30 pm

DATE: 11-08-2017

Instructions: 1. All the questions are compulsory. 2. Figures to the right indicate full marks. 3. Assume suitable data if required. Q.1(a) Define the following terms [05]1. Tandem axle 2. AADT 3. Candela 4. Desire line 5. Luminous flux 6. Explain PIEV theory. [05] (b) Q.2(a) Define Traffic Engineering. What is scope of traffic engineering? [06]Describe various vehicular characteristics considered in traffic (b) [05]engineering. Explain moving observer method. [04](c) OR Q.2(a) Enlist traffic surveys. Explain any one in detail and give purposes of [06]traffic surveys (b) What is PCU? Give factors affecting PCU [05]Explain enoscope method for spot speed studies. [04](c) Q.3 A passenger car weighing 2 ton is required to accelerate at a rate of [06](a) 2.5m/s² in the first gear from a speed of 12 kmph. The gradient is +1 percent and the road have a black topped surface. The frontal projection area of the car is 2.15m Calculate engine horse power needed. Explain design factor for street lightening What is the need for street [05]lightening Ten spot speed surveys are as under [04]64,67,43,72,76,59,69,30,37,48 Find time mean speed and space mean speed. Q.3What are the objectives of parking studies? What are different [06] (a) methods of parking studies? (b) Explain types of light sources? Explain fundamental factors of night [05]vision Explain time mean speed and space mean speed. [04]